Design, Synthesis, and biological Introduction of QUANTA as Potential PROTECTIVE DRUG FOR FUNGAL AND BACTERIAL INFECTIONS

(ZENITH PHARMACEUTICALS)

Presented By: Punit Vaghela Bsc(Chemistry) B.Pharm, M.Pharm (Medicinal Chemistry)

Contact Information

E mail – <u>punit.v.990@gmail.com</u> Contact - +91 7778914477 Company – Zenith Industry's

NOVEL DRUG SCAFFOLD FOR MULTI DRUG RESSISTANCE AGAINST BACTERIA AND FUNGUS

Flow of Presentation

- Introduction
- Review of Literature
- Design and Rationale
- Aim of Present Work
- Work Done
- Summary of Work Done

Introduction

- Bacterial infections are very common in the animal husbandry due to huge population and overcrowding.
- Poor sanitation
- Increase community acquired resistance
- Ineffective infection control program
- Increasing antibiotic use which shows resistance to the bacterial and fungal infections
- Constant use of same biotic and same molecules
- We need to have novel molecules which shows good activity on resistance bacteria.

World Health Organization (WHO). Global Report 2019

https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1 (accessed July 26, 2020)

Introduction - Need of New antibiotics in the animal husbandry

With the time running the bacterial infections are showing the good resistance to the existing Antibiotics

The major reason is the lack of new and novel drug molecules on the veterinary side

At every 15 years a new antibiotic combination with the delivery dose and novel target is found for humans and fight against the resistance bacterial infection

The infections on the veterinary side are far more complex then the human pathogens, as the personal hygiene and intellect humans have regarding pain and illness.

The researcher focus on human pathogen by taking trials and remarks from animals, still new formulations due to cost and synthetic controls the drugs are not delivered to the animal husbandry's.

Generation 2nd Bacterial infection

Generation 3rd Bacterial infection

Introduction – Why Quanta

The anti microbial Disc diffusion method as per NCCLS Guideline is conducted by the authorized lab. The test inoculum contains bacteria and fungus spores for testing.

Results for bacteria.

Staphylococcus aurous ATCC 6538
Escherichia Coli ATCC 11229
Aspergillums Niger ATCC 16404.

Test Procedure:

The test organisms diluted to approximately 10-10 CFU/ ml was individually spread by a sterile swab evenly over the face of Soyabean Casein digest agar. Test preparation equivalent to 30 ul was smeared on sterile disc. The disc was then placed on seeded plate. Control plate comprised of distilled water solution on disc. The plates incubated at 37 CI 28'C for 24/ 72 hrs. Zone of inhibition were measured by calibrated ruler.

Sample	Zone of inl	nibition in mm (A	verage)
Identification	Staphylococcus aurous	Escherichia Coli	Aspergillums Niger
Quanta	52mm	50mm	60mm

Introduction - Why Quanta

Test Method and Name.

Minimum Inhibitory Concentration (MIC) by Plate Method. Test Method – ASM Manual of Microbiology Methods.

Purpose.

The MIC of the of an antifungal is the maximum dilution of the product Quanta that will still inhibit the growth of a test microorganism. In Plate dilution method, serial dilution of the products are made in fungal growth media. The test organisms are then spread on the plate containing dilution of the products, incubated and scored for the growth.

Concentrations of MIC.

0.001%, 0.01%, 0.03%, 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, and 2%

Results for Fungus

	Concentration of Product: QUANTA > REF 5689							MIC					
Test Organism	0.001	0.005	0.01	0.03	0.05	0.03	0.3	0.5	0.8	1.0	1.5	2.0	(%)
Candida albicans ATCC 10231	G	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	0.005
Aspergillus niger ATCC 6275	G	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	0.005
Penicillum Funicolosum A-11797	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	0.001
Trichoderma Virens MTCC 1372	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	0.001

Antibiotic -Introduction

• General data As Certificate of Analysis

ITEMS	Specification
Description	Ceramic yellow powder
Solubility	DMSO, Acetone, Toluene, Acidic and basic medias
Acidity	4.5-5.0
Powder PH	7.1
Iron	NMT 50ppm
Assay by GC/HPLC/MS	99.6% Purity
Product name	Quanta
100% crude price	1350 - 1700 Rs/KG
Manufacturing Capacity	100MT/Month

Introduction – Clinical Data

ACUTE TOXICITY – QUANTA

CHEMICAL NAME – PROTECTED ORAL : RAT: LD50 (mg/kg) – 955 Dermal : RAT : - 10%EC INHALATION – DATA TO BE IDENTIFIED

REPRODUCTIVE TOXICITY

On RATS

360mg/kg/day – Reproductive test – no adverse effect on futility 50mg/kg/day - Reproductive test – no adverse effect on futility 810mg/kg/day - Reproductive test – no adverse effect on futility

Dose 30-100gm/ton feed.

DURATION

9-16 Weeks in the later laying cycle.

Novel Targets for Bacteria

- Targeting cell wall biosynthesis
- Peptidoglycan biosynthesis
- Arabinogalactan biosynthesis
- Fatty acid biosynthesis
- Targeting amino acid biosynthesis
- Targeting cofactor biosynthesis
- Targeting mycothiol biosynthesis
- Targeting terpenoid biosynthesis
- Targeting DNA synthesis
- Targeting the glyoxylate shunt
- Targeting regulatory proteins
- Inhibiting menaquinone biosynthesis
- Targeting the stringent response enzyme
- Targeting ATPPRTase

Role of HisG (ATP-PRTase) Enzyme

HisG: ATPPRTase as Novel Target for anti-bacterial activity

- The crystal structures of the *N*-1-(5-phosphoribosyl)-ATP transferase from *bacteria* in complex with inhibitor histidine and AMP has been determined to 1.8 Å resolution and without ligands to 2.7 Å resolution
- The active enzyme exists primarily as a dimer, and the histidine-inhibited form is a hexamer. The structure represents a new fold for a phosphoribosyltransferase, consisting of three continuous domains. The inhibitor AMP binds in the active site cavity formed between the two catalytic domains

Crystal Structure of ATP Phosphoribosyltransferase

b а d C

The overall fold of the *mt*ATP-PRTase. *a*, stereo view of the ribbon representation of the *mt*ATP-PRTase protomer. Ribbon is colored by secondary structure with *yellow* for helices, *cvan* for sheets, and *gray* for coils. The ligand AMP and His are shown in balland-stick representation colored by type of atom. b, molecular surface of an ATP-PRTase protomer colored by electrostatic potential. AMP was located in the cleft between domains I and II and the histidine on the allosteric regulatory domain. *c* and *d*, electron density of bound AMP (c) and histidine (*d*). Shake & Warp electron density map was averaged from six independent refinements of a composite model

HisG Inhibitors

HisG Inhibitors

MIC : 2.70 µM

Molecular docking suggests that these compounds to the catalytic site of the enzyme ATP Phosphoribosyltransferase (HisG) and might be attributed to their anti-bacterial potential. Only docking has been reported in absence of target identification

Various 6-5 membered rings such as benzimidazoles have been reported for potential anti-bacterial Activity

Figure. Various benzo[d]imidazole scaffolds with anti-microbial activity

Figure. Various benzhiazole scaffolds with anti-microbial activity

Figure. Various benzoxazole scaffolds with anti-microbial activity

Various 6-5 membered rings such as benzoxazoles have been reported for potential anti-bacterial Activity

Azaindoles as Agents

- Chatterji *et al.* have identified two potent inhibitors of bacterial from a series of compounds containing 1,4-azaindole ring as the central moiety
- It demonstrated potent inhibition of decaprenylphosphoryl--D-ribose oxidase (DprE1) with IC₅₀ values of 0.010 M and 0.032 M, respectively.

1,4-Azaindole as anti-bacterial agents

• Franz *et al.* reported *N*-cyclooctyl-4,6-dimethyl-1*H*-indole-2-carboxamide as anti-bacterial agents having MIC 0.0195 μm.

Franz, N. D.; Belardinelli, J. M.; Kaminski, M. A.; Dunn, L. C.; Calado Nogueira de Moura, V.; Blaha, M. A.; Truong, D. D.; Li, W.; Jackson, M.; North, E. J. Design, Synthesis and Evaluation of Indole-2-carboxamides with Pan Anti-microbacterial Activity. *Bioorg. Med. Chem.* 2017, *25*, 3746–3755

• Stec *et al.* reported 4,6-difluoro-*N*-((1*R*,2*R*,3*R*,5*S*)-2,6,6-trimethylbicyclo[3.1.1]heptan-3-yl)-1*H*-indole-2-carboxamide as anti-bacterial agents

Stec, J., Onajole, O. K., Lun, S., Guo, H., Vistoli, G.; Bishai, W. R.; Kozikowski, A. P. Indole-2-Carboxamide based MmpL3 Inhibitors Show Exceptional Antimicrobial Activity in an Animal Model

J. Med. Chem. 2016, 59, 6232–6247

• Yang *et al.* reported 3-(azepan-1-ylmethyl)-4-fluoro-1-octyl-*1H*-indole as anti-bacterial agents.

Yang, T.; Moreira, W.; Nyantakyi, S. A.; Chen, H.; Aziz, D. binte; Go, M. L.; Dick, T. Amphiphilic Indole Derivatives as Antimicrobacterial Agents: Structure-Activity Relationships and Membrane Targeting Properties. *J. Med. Chem.* **2017**, *60*, 2745–2763

• Kozokowski *et al.* reported 6-bromo-*N*-cyclooctyl-1*H*-indole-2-carboxamides as anti-bacterial agents.

 $MIC = 0.12 \ \mu g/mL$ *M. abscessus*

Kozikowski, A. P.; Onajole, O. K.; Stec, J.; Dupont, C.; Viljoen, A.; Richard, M.; Chaira, T.; Lun, S.; Bishai, W. R.; Raj, V. S.; Ordway, D., Kremer, L. Targeting Mycolic Acid Transport by Indole-2-Carboxamides for the Treatment of *erium abscessus* Infections Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of *bacterial* Infections. *J. Med. Chem.* **2017**, *60*, 5876–5888

Various Carboxamides with Anti-Microbial Activity

A numbers of compounds bearing amide or carboxamides moieties have been reported for anti-microbial activity. These include aminomethylene pyrazinamides **(A)**, pyrazinoic acid amides (**B**), *N*,*N*'-alkyl-diylpyrazine-2-c arboxamides(C), pyrazinamide derivatives with benzylamino substitutions **(D)**, tetrahydropyrazolopyrimidi nes (**E**), imidazo [2,1-*b*] OCF₃thiazole-5-carboxamides (F), imidazo[1,2-a]pyridine-3-carboxamides (**G**), and pyrazolo [1,5-*a*] pyridine-3carboxamides (H).

Benzo[d]thiazole-2-carboxaimdes scaffolds reported for anti-microbial activity

Eur. J. Med. Chem. 2016, 116, 187-199

Eur. J. Med. Chem. 2018, 155, 364-380

Recently, benzo[d]thiazole-2-caboxamides have been identified as key pharmacophoric scaffold for anti-microbial activity

Literature reported indole derivatives as anti-microbial agents

Various substituted indoles have been identified as the potent anti-bacterial agents such as 4,6-dimethyl-1*H*-indole-2-carboxamide (**I**), 4,6-difluoro-*N*-((1*R*,2*R*,3*R*,5*S*)-2,6,6-trimethylbicyclo[3.1.1]heptan-3-yl)-1*H*indole-2-carboxamide (**J**), 4-fluoro-1-octyl-1*H*-indoles (**K**), and 6-bromo-1*H*-indole-2-carboxamide (**L**)

New indole scaffold with amide substitution

N-Benzyl-1H-indole-2-carboxamides

New indole-2-carboxamide scaffold (I) with C-2 reverse amide substitution, R¹, R² may be various substituents such as alkyl, halide, etc

With this background, compounds belonging to *N*-benzyl-1*H*-indole-2-carboxamide scaffold are proposed for synthesis and biological evaluation of anti-bacterial potential

- To determine the probable mode of action of the compound, the designed compounds were docked against adenosine triphosphate phosphoribosyl transferase (ATPPRTase) HisG (PDB ID: 1NH8) which is the probable and newly emerging target in bacteria and fungus.
- The designed compounds have been docked against this protein using Maestro 12.1 (Schrodinger) and compared with reported inhibitor of HisG.

Sr. No.	Structure	Docking score	Amino acids Interactions	Sr. No.	Structure	Docking score	Amino acids Interactions
1	NH- NH- OCH ₃	-9.313	Phe87, Gly88, Ser89, Ser90, Val155, Val156, Gly157, Ser158, Gly159, Arg160, Thr161, Leu165, Pro15, Ala11	5	NH NH NC	-7.850	Leu12, Ala11, Gly157, Val155, Ser90,ser89, Gly88, Phe87,leu12, Ala11
2	H ₃ CO OCH ₃	-8.305	Asp154, Val155,156, Gly157, Ser158, Gly159, Arg160, Thr161, Ala139, Gly138, Ser90	6	NH-FNH2	-6.823	Ala139, Gly138, Val140, Glu141, Val156, Val155, Asp154, Leu71, Tyr116, Pro50, Lys51
3	NH- NH- OCH ₃	-8.173	Val155, Val156, Gly157, Ser158, Gly159, Arg160, Thr161, Leu162, Ser90, Ser89, Gly88, Phe87, Ala11, Leu12, Pro15	7	NH- H F	-6.788	Val155, Val156, Gly157, Ser168, Gly150, Arg160, Thr161, Ser90, Ser89, Gly88, Phe87, Ala11, Leu12, ```Pro15.
4	NH- H NH- NH- NH- NH- NH- NH- NH-	-7.921	Gly138, Ala139, Val140, Glu141, Thr161, Asp154, Lys51, Pro50, Tyr116, Leu71	8		-6.722	Gly157, Pyr116, Asp154, Val155, Val156, Gly138, Ala138, Val140, Glu141, Thr161

Sr. No.	Structure	Docking score	Amino acids Interactions	Sr. No.	Structure	Docking score	Amino acids Interactions
9	NH NH O ₂ N	-6.611	Gly86, Phe87, Gly88, Ser89, Ser90, Ala11, Leu12, Bal155, Gly157	13		-6.533	Ala11, Leu12, Phe87, Gly88, Ser89, Ser90, Val155, Gly157
10	NH-NH-NH2 H2N	-6.577	Pro50, Lys51, Leu71, Tyr116, Ase154, Bal155, Glu141, Bal140, Ala139, Gly138, Thr161	14	NH-F	-6.516	Tro15, Leu71,lys51, Val155, Ser90, Gly88, Leu12, Ala11, Tyr116, Ala115, Gly138, Asp157
11	NH- F ₃ C NH ₂	-6.564	Pro50, Lys51, Leu71, Pyr116, Asp154, Val155, Val156, Gly138, Ala138, Val140, Glu141, Thr161	15	NH- F	-6.504	Ala11, Leu12, Pro15, The87, Gly88, Ser89, Ser90, Thr161, Arg116, Gly159, Ser158, Gly157, Val156
12	NH- H ₃ CO-NH ₂	-6.564	Pro50, Lys51, Leu71, Tyr116, Gly136, Ala139, Val140, Glu141, Ase154, Val155, Thr161	16		-6.504	Ala11, Leu12, Pro15, Phe57, Gly88, Ser89, Ser90, Val155, Val156, Gly157, Ser158, Gly159, Arg160, Thr161

Sr. No.	Structure	Docking score	Amino acids Interactions	Sr. No.	Structure	Docking score	Amino acids Interactions
17	NH-	-6.461	Ala11, Tro15, The87, Gly88, Ser89, Ser90, Val155, Pla156, Gly157, Ser158, Gly159, Arg160, Thr161	21	NH OCH ₃ NH NH ₂	-6.211	ALA11, LEU12, GLY157, VAL155, TYR116, LEU171, SER180, GLY188, PHA187
18	NH-NH2	-6.39	Gly138, Ala139, Val140, Glu141, Asp154, Val155, Gly157, Ser158, Arg160, Thr161	22	NH-NH2 CI	-6.189	Ala11, Ala139, Val 140, Glu 141, Asp154, Val 155,val156, Gly157, Ser158, Thr161, Ser90, Ser89, Gly88, Ala11, Leu12
19	NH H ₃ C NH ₂	-6.378	Gly138, Ala139, Val140, Glu141, Asp154, Val155, Gly157, Ser158, Arg160, Thr161	23	CI NH H NH NH ₂	-6.177	Ala139, Ala140, Val140, Glu141, Asp154, Val155, Val156, Gly157, Ser158, Thr161, Ser90, Ser89, Gly88, Ala11, Leu12
20	NH NH NH2	-6.314	Ala11, Leu12, Gly86, The87, Ser89, Ser90, Val155, Val156, Gly157, Ser158, Thr161	24	NH H H ₂ N	-6.16	Glu141, Val140, Ala139, Thr161, Ser158, Gly157, Val156, Val155, Asp154, Tyr116, Ala115, Leu71, Lys51, Pro50

Sr. No.	Structure	Docking score	Amino acids Interactions
25	F	-6.152	Val155, Val156, Gly157, Ser158, Gly159,arg156,thr161, Ser90, Ser89, Gly88, The87, Tro15, Leu12, Ala 11
26	NH H ₃ CO OCH ₃	-6.086	Thr161, Ser158, Gly157, Val156, Val155, Asp154, Tyr116, Ala115, Leu71, Lys51, Pro50, Glu141, Val140, Ala139
27	F NH F NH ₂	-6.55	Val155, Val156, Gly157, Ser158, Gly159, Arg160, Thr161, Ser90, Ser89, Gly88, Phe87, Pro15, Leu12, Ala11
28	O2N S NH	-8.841 Standard	Ser91, Phe92, Val15, Ser90, Val156, The161, Ser158, Tyr116, Asp74, Asp70, Leu71, Gly68, Asp74

Docking pose of HisG inhibitor (nitrobenzothiazole derivative) with HisG (ATPPRTase) Interacting aminoacid residues: Ser91, Phe92, Val15, Ser90, Val156, The161, Ser158, Tyr116, Asp74, Asp70, Leu71, Gly68, Asp74

Docking pose of designed compound with HisG (ATPPRTase)

Interacting aminoacid residues: Phe87, Gly88, Ser89, Ser90, Val155, Val156, Gly157, Ser158, Gly159, Arg160, Thr161, Leu165, Pro15, Ala11

Objectives

N-Arylalkyl-1H-indole-2-carboxamides

New indole-2-carboxamide scaffold (I) with C-2 reverse amide substitution, R¹, R², may be various substituents such as alkyl, halide, etc

- 1. Design of the proposed compounds **(I)**
- 2. Synthesis of the derivatives of indole-2-carboxamides and their characterization
- 3. Submission of synthesized compounds for anti-bacterial evaluation

Scheme. Retro-synthesis of the indole-2-carboxamides.

The key intermediate, ethyl indole-2-carboxylate (**3**) required for the synthesis of the target compounds (I-III) has been thought to synthesize using Fischer indole synthesis from cyclocondensation reaction between phenyl hydrazine hydrochloride (**1**) and ethyl pyruvate (**2**) using of *p*-tosylic acid as catalyst and ethanol as solvent.

To synthesize the target compounds of series **I**, **3** would be subjected to amidation reaction using ammonium chloride under neat conditions with varieties of commercially available and substituted amines such as anilines (n = 0), benzylamines (n = 1) and phenethyl amines (n = 2)

Franz N.D., Belardinelli J.M., Kaminski M.A., Dunn L.C., de Moura V. C. N., Blaha M.A., "Design, synthesis and evaluation of indole-2-carboxamides with pan anti-microbacterial activity" *Bioorg. Med. Chem.* **2017**, *25*, 3746–55.

White solid, 74%, mp: 125-128 °C (reported value: 128-130), R_f : 0.57 (*n*-Hexane: EtOAc = 7:3); IR (KBr, cm⁻¹) 3313 (NH), 1745 (C=O), 2983 (C-H), 3056 (Aromatic C-H); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.97 (s, 1H), 7.72 (d, *J* = 8.0; 1H), 7.45 (d, *J* = 8.0; 1H), 7.35 (t, *J* = 7.4; 1H), 7.28-7.25 (m, 1H); 7.20-7.16 (m, 1H); 4.44 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.2 Hz, 3H); MS (ESI): 190 (M+H)⁺

Franz N.D., Belardinelli J.M., Kaminski M.A., Dunn L.C., de Moura V. C. N., Blaha M.A., "Design, synthesis and evaluation of indole-2-carboxamides with pan anti-microbacterial activity" *Bioorg. Med. Chem.* **2017**, *25*, 3746–3755

FT-IR of 3

MS of 3

1	12	rt	0	3 recovered
2	12	100	0	3 recovered

Shah, P.; Dhameliya, T. M.; Bansal, R.; Nautiyal, M.; Kommi, D. N.; Jadhavar, P. S.; Sridevi, J. P.; Yogeeswari, P.; Sriram D.; Chakraborti, A. K. "N-Arylalkylbenzo[d]thiazole-2-carboxamides as Anti-mycobacterial Agents: Design, New Methods of Synthesis and Biological Evaluation," *Med. Chem. Commun.* 2014, *5*, 1489-1495

Changing benzyl amine to (+)α-methyl benzyl amine

Sr. No.	Time (h)	Temp. (°C)	Yield 5b (%)	Remark
3	12	rt	0	3 recovered
4	12	100	0	3 recovered

Changing benzyl amine to diethyl amine

Sr. No.	Time (h)	Temp. (°C)	Yield 5d (%)	Remark
7	12	rt	0	3 recovered
8	26	78	0	3 recovered

Although the reaction is reported methyl indole-2-carboxylate with ethyl amine, but we failed to get **5d** using the reported conditions between the reaction of **3** and diethyl amine (**4d**)

Mistry S. N., Shonberg J., Draper-Joyce C. J., Herenbrink C. K., Michino M., Shi L., Christopoulos A., Capuano B., Scammells P. J., Lane J. R. Discovery of a Novel Class of Negative Allosteric Modulator of the Dopamine D2 Receptor Through Fragmentation of a Bitopic Ligand, *J. Med. Chem.* **2015**, *58*, 6819-6843

Changing benzyl amine to aniline

The reaction didn't undergo with aromatic amine

tert-Butoxide-Assisted Amidation of Esters under Green Conditions

The reaction didn't undergo with aryl alkyl amine

Kim, B. R.; Lee, H.-G.; Kang, S.-B.; Sung, G. H.; Kim, J.-J.; Park, J. K.; Lee, S.-G.; Yoon Y.-J. *"tert*-Butoxide-Assisted Amidation of Esters under Green Conditions" *Synthesis* **2012**, *44*, 42-50

- The free -NH of indole might be hampering the amidation of ester (3) with amines (4)
- Failure of these strategies led us to opt for alternative strategy of CDI-mediated amidation of carboxylic acids with amines for the synthesis of target compounds

To synthesize acid from ester by using NaOH (5 equiv) by using water

Shi Y, Duan Y-H, Ji Y-Y, Wang Z-L, Wu Y-R, Gunosewoyo H, Xie X. Y., Chen J. X., Yang F., Li J., Tang J., Xie X., and Yu L.-F. "Amidoalkylindoles as Potent and Selective Cannabinoid Type 2 Receptor Agonists with in Vivo Efficacy in a Mouse Model of Multiple Sclerosis." *J. Med. Chem.* **2017**, *60*, 7067-7083

FT-IR of 3

CDI Mediated Amidation for (S)-N-(1-phenylethyl)-1H-indole-2-carboxamide) (5f)

Yellow solid, 49%, mp: 187-189°C; R_f : 0.68 (*n*-Hexane: EtOAc = 7:3); IR (KBr, cm⁻¹): 3377(NH stretch), 1643(CO stretch), 2923 (CH₃); MS (ESI): 265 (M+H)⁺.

Kumar V., Moritz A. E., Keck T. M., Bonifazi A., Ellenberger M. P., Sibley C. D., Free R. B., Shi L., Lane J. R., Sibley D. R., and Newman A. H. Synthesis and Pharmacological Characterization of Novel trans Cyclopropylmethyl-Linked Bivalent Ligands That Exhibit Selectivity and Allosteric Pharmacology at the Dopamine D₃ Receptor (D₃R). *J. Med. Chem.* **2017**, *60*, 1478-1494

Procedure for synthesis of indole-2-carboxamides

Indole-2-carboxylic acids (**6**, 1 mmol) in THF taken into the round bottom purging flask and allowed to stir for 5 minutes followed by addition of CDI (1.2 equiv) and amine (**4**, 2 equiv). The inert atmosphere has been created by purging nitrogen gas into the vessel followed by stirring of the reaction mixture at 0 °C to rt for 24 h. After completion of the reaction, THF have been evaporated and final compounds have been purified using recrystallization in ethanol.

FT-IR of 5f

MS of 5f

CDI Mediated Amidation for (±)-*N*-(1-phenylethyl)-1*H*-indole-2-carboxamide (5b)

Brown solid, 49%, mp: 187-189 °C; R_f : 0.68 (*n*-Hexane: EtOAc = 7:3) IR (KBr, cm⁻¹): 3301(N-H stretching), 1652(amide stretching); MS (ESI): 265 (M+H)⁺.

Kumar V., Moritz A. E., Keck T. M., Bonifazi A., Ellenberger M. P., Sibley C. D., Free R. B., Shi L., Lane J. R., Sibley D. R., and Newman A. H. Synthesis and Pharmacological Characterization of Novel trans Cyclopropylmethyl-Linked Bivalent Ligands That Exhibit Selectivity and Allosteric Pharmacology at the Dopamine D₃ Receptor (D₃R). *J. Med. Chem.* **2017**, *60*, 1478-1494

FT-IR of 5b

MS of 5b

CDI Mediated Amidation for *N*-(3,5-dimethoxybenzyl)-1*H*-indole-2-carboxamide (5g)

Yellow solid, 58%, mp: 235-240 °C; IR (KBr, cm⁻¹): 3315 (N-H stretching), 1642 (C=O stretching); R_f : 0.58 (*n*-Hexane: EtOAc = 7:3); MS (ESI): 311 (M+H)⁺.

Kumar V., Moritz A. E., Keck T. M., Bonifazi A., Ellenberger M. P., Sibley C. D., Free R. B., Shi L., Lane J. R., Sibley D. R., and Newman A. H. Synthesis and Pharmacological Characterization of Novel trans Cyclopropylmethyl-Linked Bivalent Ligands That Exhibit Selectivity and Allosteric Pharmacology at the Dopamine D₃ Receptor (D₃R). *J. Med. Chem.* **2017**, *60*, 1478-1494

MS of 5g

CDI Mediated Amidation for N-(4-fluorobenzyl)-1H-indole-2-carboxamide (5h)

Brown solid, 51%, mp: 228-230 °C; R_f : 0.61 (*n*-Hexane: EtOAc = 7:3); IR (KBr, cm⁻¹): 3315(N-H stretching), 1635(C=O stretching) ; MS (ESI): 269 (M+H)⁺.

Kumar V., Moritz A. E., Keck T. M., Bonifazi A., Ellenberger M. P., Sibley C. D., Free R. B., Shi L., Lane J. R., Sibley D. R., and Newman A. H. Synthesis and Pharmacological Characterization of Novel trans Cyclopropylmethyl-Linked Bivalent Ligands That Exhibit Selectivity and Allosteric Pharmacology at the Dopamine D₃ Receptor (D₃R). *J. Med. Chem.* **2017**, *60*, 1478-1494

FT-IR of 5h

MS of 5h

Summary of Work Done

- Previously identified substituted indoles and carboxamides have been reviewed and studied as the potent anti-bacterial agents.
- Docking study have been performed using Maestro 3.0 (Schrödinger) in search of novel ATPPRTase (HisG) inhibitor, which may lead to inhibition of essential amino acid for bacterial strains.
- Tried the synthesis of amide from ester with several amines but no successful results were obtained
- Alternative route for synthesis of amide via CDI mediated amidation of indole-2carboxylic acid has been planned and executed

Summary of Work Done

- The key intermediate, indole-2-carboxylic acid required for the synthesis of indole-2-carboxamides have been obtained by hydrolysis of ethyl indole-2-carboxylate. The synthesis of four target compounds (5b, 5f, 5g, 5h) have been achieved in moderate yields via CDI mediated amidation of indole-2-carboxylic acid with benzyl amines in THF at 0 °C-rt and characterized it using FT-IR, MS, and ¹H NMR
- Samples have been submitted for the biological evaluation and results are awaited.

Novelty Status: Sci-Finder Report

Contact Us | Legal Copyright © 2019 American Chemical Society. All Rights Reserved. | 후iCP을 13047075号-3

Fischer Indole Synthesis

The reaction of a (substituted) phenylhydrazine with a carbonyl (aldehyde or ketone) initially forms a phenylhydrazone which isomerizes to the respective enamine (or 'ene-hydrazine'). After protonation, a cyclic [3,3]-sigmatropic rearrangement occurs producing an imine. The resulting imine forms a cyclic aminoacetal (or aminal), which under acid catalysis eliminates NH3, resulting in the energetically favorable aromatic indole.

¹H NMR of 5h

Contact Information

E mail – <u>punit.v.990@gmail.com</u> Contact - +91 7778914477 Company – Zenith Industry's